Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.

Identifieur interne : 000610 ( Main/Exploration ); précédent : 000609; suivant : 000611

Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.

Auteurs : Colin E. Murdoch [Royaume-Uni] ; Markus M. Bachschmid [États-Unis] ; Reiko Matsui [États-Unis]

Source :

RBID : pubmed:25399587

Descripteurs français

English descriptors

Abstract

S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes.

DOI: 10.1042/BST20140213
PubMed: 25399587
PubMed Central: PMC4934611


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.</title>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation wicri:level="1">
<nlm:affiliation>*Vascular Medicine Section, Aston Medical School Aston University, Aston Triangle, Birmingham B47 ET, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>*Vascular Medicine Section, Aston Medical School Aston University, Aston Triangle, Birmingham B47 ET</wicri:regionArea>
<wicri:noRegion>Birmingham B47 ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<affiliation wicri:level="2">
<nlm:affiliation>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25399587</idno>
<idno type="pmid">25399587</idno>
<idno type="doi">10.1042/BST20140213</idno>
<idno type="pmc">PMC4934611</idno>
<idno type="wicri:Area/Main/Corpus">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000577</idno>
<idno type="wicri:Area/Main/Curation">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000577</idno>
<idno type="wicri:Area/Main/Exploration">000577</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.</title>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation wicri:level="1">
<nlm:affiliation>*Vascular Medicine Section, Aston Medical School Aston University, Aston Triangle, Birmingham B47 ET, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>*Vascular Medicine Section, Aston Medical School Aston University, Aston Triangle, Birmingham B47 ET</wicri:regionArea>
<wicri:noRegion>Birmingham B47 ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<affiliation wicri:level="2">
<nlm:affiliation>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochemical Society transactions</title>
<idno type="eISSN">1470-8752</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>Neovascularization, Pathologic (MeSH)</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
<term>Vascular Endothelial Growth Factor Receptor-1 (metabolism)</term>
<term>Wnt Proteins (metabolism)</term>
<term>Wnt-5a Protein (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Néovascularisation pathologique (MeSH)</term>
<term>Protéine Wnt-5a (MeSH)</term>
<term>Protéines de type Wingless (métabolisme)</term>
<term>Protéines proto-oncogènes (métabolisme)</term>
<term>Récepteur-1 au facteur croissance endothéliale vasculaire (métabolisme)</term>
<term>Régulation positive (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>NF-kappa B</term>
<term>Proto-Oncogene Proteins</term>
<term>Vascular Endothelial Growth Factor Receptor-1</term>
<term>Wnt Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de transcription NF-kappa B</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines de type Wingless</term>
<term>Protéines proto-oncogènes</term>
<term>Récepteur-1 au facteur croissance endothéliale vasculaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Neovascularization, Pathologic</term>
<term>Signal Transduction</term>
<term>Up-Regulation</term>
<term>Wnt-5a Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Néovascularisation pathologique</term>
<term>Protéine Wnt-5a</term>
<term>Régulation positive</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25399587</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1470-8752</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Biochemical Society transactions</Title>
<ISOAbbreviation>Biochem Soc Trans</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>1665-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BST20140213</ELocationID>
<Abstract>
<AbstractText>S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Murdoch</LastName>
<ForeName>Colin E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>*Vascular Medicine Section, Aston Medical School Aston University, Aston Triangle, Birmingham B47 ET, U.K.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bachschmid</LastName>
<ForeName>Markus M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118, U.S.A.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>†Vascular Biology Section, Boston University Medical School, Boston, MA 02118, U.S.A.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN268201000031C</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 HL104017</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN268201000031C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem Soc Trans</MedlineTA>
<NlmUniqueID>7506897</NlmUniqueID>
<ISSNLinking>0300-5127</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C085389">WNT5A protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051153">Wnt Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071818">Wnt-5a Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C501162">FLT1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D040281">Vascular Endothelial Growth Factor Receptor-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009389" MajorTopicYN="Y">Neovascularization, Pathologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040281" MajorTopicYN="N">Vascular Endothelial Growth Factor Receptor-1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051153" MajorTopicYN="N">Wnt Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071818" MajorTopicYN="N">Wnt-5a Protein</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25399587</ArticleId>
<ArticleId IdType="pii">BST20140213</ArticleId>
<ArticleId IdType="doi">10.1042/BST20140213</ArticleId>
<ArticleId IdType="pmc">PMC4934611</ArticleId>
<ArticleId IdType="mid">NIHMS796286</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2010 Aug 9;190(3):391-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2011 Oct;39(5):1260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Jun 12;2001(86):pl1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2006 Oct 3;114(14):1531-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Nov;116(11):2955-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8189-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Diabetol. 2014 Apr;51(2):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2014 Jun 24;63(24):2734-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2011 Jun;31(6):1368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21415386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2009 Jun;23 (6):763-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 03;9(1):e83819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24404139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2004 Feb;12(2):289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2007 Feb;18(2):260-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 09;485(7398):333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22596155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol (Oxf). 2012 Jan;204(1):17-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2012 Sep 28;111(8):1091-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2006 Jul 15;71(2):208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2012 Mar;52(3):568-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2013 Jan 18;112(2):382-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Oct 19;110(16):2424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15477417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jun 3;584(11):2478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20420839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 29;474(7352):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Jul 15;185(2):1274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2002 Oct 15;406(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12361712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22472004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2001 Sep;21(9):1483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12 ):8633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8248162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 7;285(19):14377-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20223829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):524-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22010840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Oct 26;101(9):948-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17823371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2011 Mar 4;108(5):531-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2004 Oct 29;95(9):884-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Basic Res Cardiol. 2011 Jun;106(4):527-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21528437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
</region>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000610 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000610 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25399587
   |texte=   Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25399587" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020